
 

Optimal Preventive Maintenance Policy for 

non-Indentical Components: Traddition 

Renewal Theory vs Modern Reinforecment 

Learning 

Shaghayegh Eidi1, Abdollah Safari 1*, Firoozeh Haghighi 1 

1-Department of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran 

 

Corresponding author, a.safari@ut.ac.ir 

Abstract  

In this paper, we compare traditional approach aginst reinforcement learning algorithms to find the optimal preventive maintenance 

policy for equipments composed of multi-non-identical components with different time-to-failure distributions. As an application, we used 

the data from military trucks which consisted of multiple components with very different failure behaviour such as tires, transmissions, 

wheel rims, couplings, motors, brakes, steering wheels, and shifting gears. Four different strategies have been proposed for preventive 

maintance of these components in the literature. To find the optimal preventive maintancence policy, we used both traditional approach 

(renewal theory based) and the convetional reinforcement learning algorithms and compared their performance. The main advantages of 

the latter approach is that, unlike the traditional approach, they are not required to estimate the model parameters (e.g., transition 

probabilities) and without any explicit mathematical formula, they converge to the optimal solution. Our results showed that when the 

compoenent time-to-falirue distributions are available, the traditional approach works best. However, where no such information is 

available or the distributions are misspecified, the reinforcement learning approach outperforms. 

Keyword: Opportunistic maintenance; Preventive maintenance; Markov decision process; Monte Carlo; Q-learning; Reinforcement 

learning                                 

Introduction  
In the recently released European Standards regarding 

maintenance, maintenance is defined as the combination 

of all technical, administrative and managerial actions 

during the life cycle of an item intended to retain it in, 

or restore it to, a state in which it can perform the 

required function; see Marquez and Gupta [1]. 

Maintenance problems can be solved by using 

traditional approaches as well as machine learning 

methods. In recent years, the use of reinforcement 

learning (RL) algorithms has become very popular and 

widely used. RL is one of the newer approaches of 

machine learning that has gained prominence in various 

fields of human life today. In general, RL is a technique 

that allows a decision-making (agent) to maximize his 

total reward by interacting with the environment. 

Ravichandiran [2] introduced the steps of a typical RL 

algorithm as follows: 

 

1. First, the agent interacts with the environment by 

performing an action 

2. The agent performs an action and moves from one 

state to another 

3. And then the agent will receive a reward based on 

the action it performed 

4. Based on the reward, the agent will understand 

whether the action was good or bad 

5. If the action was good, that is, if the agent received 

a positive reward, then the agent will prefer 

performing that action again, otherwise, the agent 

will try performing an other action which results in 

a positive reward. So it is basically a trial and error 

learning process. 

As mentioned earlier, RL algorithms are used a lot in 

most fields at present. Wang et al. [3] applied multi-

agent RL to solve the maintenance problem for a flow 

line system consisting of two series machines with an 

intermediate finite buffer in between. Liang et al. [4]  

modelled the energy management problem by a Markov 
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decision process and  solve it by using an Approximate 

Dynamic Programming (ADP)-based approach to match 

electricity supply and demand. Yousefi et al. [5] used an 

RL approach to develop a new dynamic maintenance 

policy for multi-component systems with individually 

repairable components, where each component is at risk 

of two competing failure processes of degradation and 

random shocks. Adsule et al. [6] modelled the 

Condition-based maintenance (CBM) decision-making 

as a continuous semi-Markov decision process and 

applied an RL algorithm to learn the optimal 

maintenance decisions and inspection schedule based on 

the current health state of the component.  

In this paper, we consider military trucks composed of 

multi-non-identical components. Trucks are systems 

that are used continuously, so the possibility of them 

breaking down on the road is very high, which can result 

in financial and life-threatening costs. Additionally, 
trucks are used in the military, so minimizing the 

downtime of any truck is essential.  It is important to 

efficiently obtain the optimal replacement times for each 

component of the system. Haleem and Yacout [7] and 

Barde et al. [8] tackled this problem before. They used 

the truck’s eight more important components in their 

analysis: tires, transmissions, wheel rims, couplings, 

motors, brakes, steering wheels, and shifting gears. We 

will use the same set of components here as well. Abdel 

Haleem and Yacout [7] used renewal theory to estimate 

the components’ replacement times.  Barde et al. [8] 

estimated replacement times by using Monte Carlo 

reinforcement learning (MCRL). We aimed to optain the 

optimal maintenance policy by using the two existing 

approaches in the literature as well as employing a time 

difference (TD) learning approach, which is a more 

efficient RL algorithm than MCRL. We will evaluate 

the performance of all these approaches under two 

scenarios: when the true failure time distributions are 

available versus they are misspecified. 

In the next section, we will present the problem 

assumptions and existing maintanence strategies; In 

Method section, we will present different algorithms. 

Finally, in Results section, we will report the numerical 

results comparing the TD-based RL algorithm’s 

performance agains the two other methods proposed in 

the literature. 

Motivation 

We consider an equipment that contains multiple non-

identical components. Our purpose in this article is to 

find a policy that minimizes the total downtime of the 

equipment. The downtime is defined as the non-

productive time, which is the time that the system is not 

operational due to a failure or a preventive action. Each 

component of the equipment has a different time to 

failure  distribution that is modeled by a Weibull 

distribution its own shape and scale parameters. The 

strategies are base on the following assumptions: 

 

1. If we replace a component due to failure, it takes 

more time than if we replace a component 

preventively. 

2. If we replace a group of components or a whole 

system, it takes less time than if we replace each 

component separately. 

3. There are replacement opportunities at regular 

intervals. 

 

The aforementioned assumptions can be found in many 

military applications, where the equipment’s reliability 

is essential, downtime must be minimized, and cost 

considerations are less important; see Haleem and 

Yacout [7].  

 

Following Haleem and Yacout [7], the following four 

replacement strategies will be used and compared agains 

one another: 

- Strategy I: Every component is replaced upon 

failure. It is a corrective maintenance (baseline). 

- Strategy II: every component is replaced upon 

failure and at an individual fixed interval, 𝑇𝑖 , for 

component i. It is based on a preventive 

maintenance. Haleem and Yacout [7] estimated 𝑇𝑖  
by minimizing the  downtime per unit time, 𝐷𝑖 , for 

component i. 𝐷𝑖  is calculated from the following 

expression:  

 
𝑎𝑟𝑔𝑚𝑖𝑛𝑇𝑖𝐷𝑖

= 
𝑡𝑝𝑖𝑅(𝑇𝑖) + 𝑡𝑓𝑖[1 − 𝑅(𝑇𝑖)]

(𝑇𝑖 + 𝑡𝑝𝑖)𝑅(𝑇𝑖) + [𝑡𝑓𝑖 + 𝐸(𝑡|𝑡 ≤ 𝑇𝑖)][1 − 𝑅(𝑇𝑖)]
, ∀𝑖         (1) 

Where 𝑡𝑝𝑖  is time to replace component i preventively, 

𝑡𝑓𝑖  is time to replace component i upon failure, 𝑅(𝑇𝑖) is 

the reliability of component i at time 𝑇𝑖  and 𝐸[𝑡|𝑡 ≤ 𝑇𝑖] 
is the expected time to failure given that it occurs before 

𝑇𝑖 .  
- Strategy III: It is based on Strategy II, to which it 

is added a scheduled overhaul. In other words, as 

Strategy II, every component is replaced at failure 

and at replacement intervals 𝑇𝑖  for component I, but 

also, the whole system is replaced at a known fixed 

time. 
- Strategy IV: It is a group-based maintenance 

strategy. Any component i that fails or reaches its 

replacement interval 𝑇𝑖 , the components of its group 

are also replaced with it. 

Markov Decision Process 

A Markov decision process (MDP) framework has the 

following key components: 

1. 𝑆: Set of states (𝑠 ∈ 𝑆) 

2. 𝐴: Set of actions (𝑎 ∈ 𝐴) 

3. 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡): Transition probabilities 

4. 𝑅(𝑠, 𝑎): Reward function of doing action a in 

state s. 
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We use model-free RL due to two reasons: curse of 

dimensionality and curse of modeling. The curse of 

dimensionality arises from the much longer 

computational time and much larger memory space 

needed as the state space of a problem become larger. 

The curse of modeling arises from the need to estimate 

the transition probabilities, which is often difficult to 

estimate, especially when the state space is large; see 

Powell [9]. Now we present MDP formulation (state, 

action and reward function) for each preventive strategy 

(i.e., II, III and IV).  

MDP formulation of strategy II : Let 𝐺𝑖 be age of 

component i, 𝑓𝑖 = 1  denotes that component i is failed 

and 𝑓𝑖 = 0 denotes its normal status, so the state of the 

system at time t is the vector defined as follows: 

 

𝑠𝑡 = (𝐺1, … , 𝐺8, 𝑓1, … , 𝑓8). 
 

Let 𝑎𝑖 = 1 means PM action and 𝑎𝑖 = 0 means “do 

nothing” action, then the action of the system at time t 

is:  

 

𝑎𝑡 = (𝑎1, … , 𝑎8). 
 

Base on Barde et al. [8] work, the reward function can 

be defined as follows:  

 
 𝑅(𝑠𝑡, 𝑎𝑡) =

{
 
 

 
 
−𝛼𝑖 . 𝑡𝑝𝑖  ,                                                                 𝑖𝑓 𝑎𝑖 = 1

−𝛼𝑖 . Δ. ⌈
𝑡𝑓𝑖

Δ
⌉ ,                                         𝑖𝑓 𝑎𝑖 = 0 𝑎𝑛𝑑 𝑓𝑖 = 1

                                         
Δ ,                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

Where 𝛼𝑖 = 
∆

𝑡𝑝𝑖
  is a scale factor as they assumed that 

𝑡𝑝𝑖  is scaled such that it has at least the same time period 

than ∆ (see Barde et al. [8] for more information); ∆ is 

time interval between two epochs and ⌈. ⌉ is the ceiling 

function.  

MDP formulation of strategy III : Let 𝐺𝑖 be age of 

component i, 𝑓𝑖 = 1  denotes that component i is failed 

whearas 𝑓𝑖 = 0 denotes  normal status and 𝑂 = 1 means 

replace whole system whereas 𝑂 = 0 denotes that don’t 

replace whole system, then, the state of the system at 

time t is the vector defined as follows: 

𝑠𝑡 = (𝐺1, … , 𝐺8, 𝑂, 𝑓1, … , 𝑓8). 
 

The action on the system is defined as: 

 

𝑎𝑡 = (𝑎1, … , 𝑎8). 
 

The reward function is: 

 

𝑅(𝑠𝑡, 𝑎𝑡)

=  

{
 
 
 
 

 
 
 
 
−𝛼𝑖 . 𝑡𝑝𝑖 ,                                                       𝑖𝑓 𝑎𝑖 = 1 , 𝑂 = 0

−𝛼𝑖 . Δ. ⌈
𝑡𝑓𝑖
Δ
⌉ ,                                  𝑖𝑓 𝑎𝑖 = 0,𝑂 = 0, 𝑓𝑖 = 1

−𝛼𝑖 . Δ. ⌈
𝛽. ∑ 𝑡𝑝𝑖

8
𝑖=1

Δ
⌉ ,                                                𝑖𝑓 𝑂 = 1

Δ,                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where 𝛽 ∈ (0 , 1) comes from the assumption which 

states that the time to replace the whole system is less 

than the sum of times to replace each component 

separately. 

MDP formulation of strategy IV: states and actions in 

Strategy IV is the same as those in Strategy II, but 

reward function is different due to group structure. The 

components are grouped as follows:  

(𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5) = ({1,3}, {3,8}, {3,5}, {7,6}, {4,2}) 
The groups are formed based on technical reasons such 

as the difficulty or ease of reaching and changing a 

component when a neighboring component has failed.  

Then, the reward function is: 

 
𝑅(𝑠𝑡, 𝑎𝑡)

=  

{
 
 
 

 
 
 −𝛼𝑖 . 𝛽. ∑ 𝑡𝑝𝑙

𝑙∈𝜙𝑗

,                                  𝑖𝑓 𝑎𝑘 = 1 𝑎𝑛𝑑 𝑘 ∈ 𝜙𝑗

−𝛼𝑖 . Δ. ⌈
𝛽.∑ 𝑡𝑓𝑙𝑙∈𝜙𝑗

Δ
⌉ ,                  𝑖𝑓 𝑓𝑘 = 1,   𝛼𝑘 = 0 , 𝑘 ∈ 𝜙𝑗

Δ,                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where 𝛼𝑖 =
Δ

𝛽.Δ.∑ 𝑡𝑝𝑙𝑙∈𝜙𝑗

  and  𝛽 ∈  (0,1)   is defined 

similarly as in Strategy III. 

Reinforcement Learning 
Barde et al. [8] used on-policy first visit MCRL 

algorithm to find the optimal replacement time 𝑇𝑖  for 

each preventive strategy separately whearas we will use 

a TD learning approach that is more efficient than 

MCRL. 

TD learning is a model-free approach that combines 

sampling and bootstrapping simoltanously. One of the 

advantages of TD over MCRL is that MCRL can only 

be used for episodic problems. In other word, MCRL 

learns from complete episodes only. Unlike MCRL, TD 

learning employes single steps to learn (be updated after 

every step) and does not need to wait until the end of an 

episode. Therefore, TD learning can be applied to both 

countinuing and episodic problems. 

In this paper, for the military trucks problem, we will 

use a Q-learning (QL) algorithm, which is an off-policy 

TD control algorithm. QL is one of the most  popular 

and efficient algorithms in RL. It is an off policy RL 

algorithm because the QL function learns from actions 

that are not necessarily taken under the current agent 
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policy. Similar to other RL algorithms, QL seeks to 

learn a policy that maximizes a pre-defined total reward 

in every state. The objective of QL algorithm is to learn 

and estimate optimal action-value function that defined 

as  

 

𝑄∗(𝑠𝑡 , 𝑎𝑡) =  max
𝜋
𝑄𝜋(𝑠𝑡 , 𝑎𝑡), 

Where  

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝔼𝜋[∑𝛾𝑘𝑅𝑡+𝑘+1| 𝑠𝑡 , 𝑎𝑡]

∞

𝑘=0

 

QL directly approximates optimal action-value function 

by taking the best action when bootstrapping: 

 
𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼[𝑅𝑡+1

+ 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡+1, 𝑎)

− 𝑄(𝑠𝑡, 𝑎𝑡)], 

 

 

 

 (2) 

Where 𝛼 ∈ (0,1) is the learning rate that controls the 

importance of the old against learned value, 𝛾 ∈ (0,1) is 

the discount factor determines how much importance we 

give to future rewards compared to the immediate 

reward 𝑅𝑡+1; see Sutton and Barto [10]. The algorithm’s 

steps are shown in Fig. 1.  

One RL crucial element is the trade-off between 

exploitation and exploration. Exploration consists of the 

agent trying all the possible actions at least once in order 

to make better action selection in the future, whereas 

exploitation consists of the agent using its current 

knowledge to obtain the highest reward. For achieving 

this balance, we use an 𝜀-greedy policy to take the 

optimal actions. The 𝜀-greedy approach selects the 

action with the highest estimated reward most of the 

times ((1 − 𝜀) × 100 % of the times). 

 

 
Fig. 1.Q_learning (off-policy TD control) 

We chose 𝜀 in such a way that in the initial episodes, the 

agent starts to explore, gather information, and as time 

goes on and more information about the environment is 

collected by the agent, 𝜀 vanishes. Finally, when the 

agent acquired “enough knowledge”, it will soley takes 

actions to maximize its reward (no exploration). Also, 

to ensure convergence to the optimal value, we chose 

𝜀 as 𝜀𝑡 = 
1

𝑡
 for the 𝑡𝑡ℎ episode where both assumptions 

of ∑ 𝜀𝑡
2 < ∞∞

𝑡=0  and ∑ 𝜀𝑡 = ∞
∞
𝑡=0  are hold; see Tsitsiklis 

[11]. 

If the learning rate (𝛼) is set to zero, the action-value 

function does not be updated and therefore, there will be 

no learning for the agent. If one chooses the learning rate 

be near to one, the learning process will be very quick; 

Therefore,  we update the learning rate after each 

episode as follows: 

𝛼(𝑡) = max(0.1, min(1, 1 − log(
𝑡+1

𝛾
))), 

where 𝛾 is a problem-specific decay parameter and 

needs to be chosen by trial and error. 

Results 

Scenario 1: True failure time distributions 

are available 

 It is assumed that each component failure probability is  

Independent from others, the algorithm searches for the 

Table 1.Components failure time distribution 

 

optimal action-value function for each component, and  

𝑇𝑖  that corresponds to the age where the value of the 

action ‘replace preventively’ is higher than the value of 

the action ‘do nothing’.  

Let 𝑃(𝑡, 𝜆𝑖 , 𝑘𝑖) be the probability density function of 

Weibull, 𝜆𝑖 the scale parameter, and 𝑘𝑖 the shape 

parameter of the distribution for the 𝑖𝑡ℎ component. 

Table 1 reports the component-specific Wibull 

distribution parameters as well as 𝑡𝑝𝑖  and 𝑡𝑓𝑖 . 

The time interval between every two decision epochs is 

assumed to be 5 hours. This value is chosen because the 

probability that two components will fail during this 

time interval is approximately zero. We used a similar 

simulation settings as the one proposed by Barde et al’ 

paper [8] to estimate each approach downtime for each 

strategy. Comparison of the performance of each 

strategy is performed between the traditional method, 

the MRCL and the QL approaches. 

 Tire Transmission Wheel Coupling Motor brake Steering Gears 

mean 14.06 5.903 4.218 8.332 2.039 23.32 4.868 12.13 

𝝀𝒊 (scale) 14.076 5.934 4.248 8.373 2.046 23.41 4.93 12.148 

𝒌𝒊 
(shape) 

378.17 108.917 79.65 115.829 170.756 143.747 43.953 278.507 

𝒕𝒑𝒊 0.0024 0.032 0.0037 0.0051 0.0074 0.0042 0.0026 0.0052 

𝒕𝒇𝒊 0.012 0.039 0.015 0.036 0.03 0.021 0.018 0.021 

https://en.wikipedia.org/wiki/Scale_parameter
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In strategy II, agent is learnt the optimal maintenance 

policy to interact with the environment in ~400 episode 

by applying MCRL whearas, the agent is learnt the 

optimal policy in interacting with the environment in 

~200 episode by applying QL algorithm. Table 2 

demonstrates optimal replacement time for strategy II 

(in weeks) by using the three mentioned approaches. As 

can be seen, there is a slight difference between the 

optimal replacement  times in all three approaches; 

however, the optimal replacement times of the MC 

algorithm seem to be slightly higher than those of the 

other two approaches. 

 
Table 2. Optimal replacement times (in weeks) for Strategy 

II 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 13.780 13.988 

Transmission 5.770 5.804 8.860 

Wheel 3.964 3.928 4.137 

Coupling 7.917 7.827 8.125 

Motor 1.970 2.024 2.024 

Brake 22.381 22.292 22.798 

Steering 4.339 4.226 4.643 

Gears 11.875 11.875 11.905 

 

Table 3 and Fig. 2 illustrates a performance comparison 

among the three approaches in Strategy II. It can be seen 

that the traditional method has a total downtime of 7.454 

week with 16 failed components and 867 preventive 

replaced components due to preventive actions. Those 

numbers are 7.574 week, 25 failed components, and 860 

preventive replaced components for the QL algorithm 

and 8.129 week, 68 failed components, and 806 

preventive replaced components for the MC algorithm. 

The QL approach outperfmoed the MC approach, its 

performance seems to be similar to the traditional 

approach with the traditional approach has has a slightly 

lower system downtime and number of failed 

components. 

Table 3. System downtime (in weeks), number of failed and 

replaces component of each approach for Strategy II 

 Traditional Q-learning MCRL 

System 

downtime 
7.454 7.574 8.129 

number of 

failed 

component 

16 25 68 

Number of 

prevention 

action 

867 860 806 

 

 
Fig. 2.System downtime  (in weeks) of different appcoaches 

for Strategy II 

In Strategy III, the agent finds the optimal policy in 

interacting with the environment in ~400 and ~250 

episodes with MC and QL algorithms, respectively. 

Table 4 reports the optimal replacement times of each 

component by suing different appproasches in Strategy 

III. 

Table 4. Optimal replacement times (in weeks) for Strategy 

III 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 13.810 13.839 

Transmission 5.770 5.804 5.923 

Wheel 3.964 3.988 4.137 

Coupling 7.917 7.738 8.185 

Motor 1.970 2.024 2.024 

Brake 22.381 22.530 23.036 

Steering 4.339 4.137 4.643 

Gears 11.875 11.964 12.054 

Table 5 shows total system downtime of the three 

approaches in Strategy III. The traditional approach 

achieves the lowest downtime of 7.657 weeks at a 

scheduled overhaul of 21 weeks, with 9 failed 

components, and 956 preventive replaced components 

due to preventive action; The QL algorithm achieves the 

lowest downtime of 7.763 weeks at a scheduled 

overhaul of 21 weeks, with 12 and 985 failed and 

preventive replaced components; Finally, the MC 

algorithm achieves the lowest downtime of 8.985 weeks 

at a scheduled overhaul of 15 weeks, with 120 and 912 

failed and preventive replaced components. In Strategy 

III, the traditional method has the lowest overall 

downtime compared to the other two approaches. The 

difference between  average downtime of QL and that 

of the traditional approach was less than one day (~18 

hours). However, such difference between the MC and 

the traditional approaches was as high as one week. 

 
Table 5. System downtime (in weeks) obtained by different 

approaches for Strategy III with different overhaul times 

Schedule 

overhaul 

System downtime  

Traditional Q-learning MCRL 

3 10.987 11.054 11.121 

6 10.159 10.334 11.223 

7

7.2

7.4

7.6

7.8

8

8.2

traditional QL MCRL

D
o
w

n
ti

m
e

Strategy II
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9 8.515 8.898 9.821 

12 8.673 8.635 9.638 

15 7.934 8.040 8.985 

18 8.273 8.457 9.731 

21 7.657 7.763 9.339 

24 8.230 8.160 9.561 

27 7.731 7.909 9.553 

30 7.903 7.981 9.505 

 

Table 6, Table 7 and Fig. 3 illustrates similar comparion 

results among the three approaches for Strategy IV. The 

agent finds the optimal policy in interacting with the 

environment in ~1000 and ~200 episodes in MC and QL 

algorithms. Table 6 reports the optimal replacement 

times for different components by the three approaches 

in Strategy IV. The replacement times estimated by 

using the RL algorithms are much lower than the 

replacement times obtained through the traditional 

approach. The reduction in replacement times is due to 

the group structure in this strategy. Components with a 

lower mean failure time dominate the overall 

replacement time of their fellow components. It can be 

seen that in the Table 7 that the traditional approach has 

a total downtime of 8.375 week with 27 failed 

components and 1237 preventive replaced components 

due to preventive action. The overall system downtime 

were 9.117 week (with 39 failed and 1348 preventive 

replaced components) and 10.815 week (with 84 failed 

and 1618 preventive replaced components) for the QL 

and MC algorithms. In Strategy IV, the traditional 

approach has the lowest downtime, the lowest number 

of failed components, and also has fewer preventive 

replacements than the other two approaches (which will 

lead to lower maintenance costs). 

Table 6. Optimal replacement times (in weeks) for Strategy 

IV 

Component 

Name 
Traditional Q-learning MCRL 

Tire 13.809 4.167 4.226 

Transmission 5.770 5.804 5.893 

Wheel 3.964 2.024 1.994 

Coupling 7.917 5.832 5.893 

Motor 1.970 2.024 1.994 

Brake 22.381 4.375 4.643 

Steering 4.339 4.375 4.643 

Gears 11.875 4.167 4.167 

Table 7. System downtime (in weeks), number of failed and 

replaces component of each approach for Strategy IV 

 Traditional Q-learning MCRL 

System 

downtime 
8.375 9.117 10.815 

number of 

failed 

component 

27 39 84 

Number of 

prevention 

action 

1237 1348 1618 

 

 
Fig. 3.System downtime (in weeks) for Strategy IV 

According to  the Table 8, Table 9 and Table 10, 

Strategy I is the worst strategy as it has longest 

downtime. This shows the clear advantage of the 

preventive strategies over the corrective maintenance 

strategies. Overall, the most efficient strategy among 

these proposed strategies is Strategy II. 

Table 11 reports the average execution time to obtain the 

optimal policy by each approach and in strategy. As it 

can be seen, the traditional appraoch was the most time-

efficient approach (less than a second). After the 

tradditional approach, the QL algorithm was about twice 

faster than the on-policy first visit MC algorithm. As 

expected, the more complex a strategy is, the more time 

requires to obtain its optimal policy. 

 
Table 8. Evaluation of traditional approach for different 

strategies 

 Strategy 

I 

Strategy 

II 

Strategy 

III 

Strategy 

IV 

System 

downtime 
21.366 7.454 7.657 8.375 

number of 

failed 

component 

842 16 9 27 

Number of 

prevention 

action 

0 867 956 1237 

Table 9. Evaluation of QL algorithm for different strategies 

 Strategy II Strategy III Strategy IV 

System 

downtime 
7.574 7.762 9.117 

number of 

failed 

component 

25 12 39 

Number of 

prevention 

action 

860 985 1348 

Table 10. Evaluation of MC algorithm for different strategies 

 Strategy II Strategy III Strategy IV 

System 

downtime 
8.129 8.985 10.815 

number of 

failed 

component 

68 120 84 

Number of 

prevention 

action 

806 912 1618 
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Table 11.Execution time to converge to the optimal policy 

by different approaches in different strategies 

 Strategy II Strategy III Strategy IV 

Tradditional < 1 sec < 1 sec < 1 sec 

QL 2 min 2 min 22 min 

MC 4 min 3 min 53 min 

Scenario 2: Misspecified failure time 

distributions are available 

The results reported in Scenario 1 are under the 

assumption of knowing the environment and therefore, 

the true failure time distribution of different components 

were available. However, under a more realistic 

scenario, the true failure time distribution of the 

components may not be available. 

In this section, we evaluate the performance of the three 

approaches under a misspecified failure time 

distribution of the components. More specifically, we 

assumed the true distribution of failuire time of the 

components remain Weibull with the same parameters 

reported in Table 1. However, a misspecified Weibull 

distribution (either its shape or scale parameter is 

overestimated by different degrees) is assumed for each 

component while finding the optimal policy by each 

approach. 

The RL free-model algorithms require no assumptions 

for the environment and the agent interacts with the 

environment directly (data driven). That is, they will not 

be impacted by the misspecified failure time 

distribution.  

Table 12 reports the optimal replacement times obtained 

through "Eq. (1)" by assuming an overestimated 

Weibull shape parameter. As shown in  Fig. 4, Fig. 7  

and Fig. 6 , the misspecification of the Weibull shape 

parameter does not seem to have a larage impact on the 

estimated optimal replacement time of the components 

by the tradditonal approach. In the estimated system 

downtime, when using the optimal replacement time of 

the traditional approach, seemed to be impactd 

differently in different startegies. Specifically, the 

traditional system downtime in Strategy II and III were 

slightly impacted (increased by 1.5-3 days) only when 

the shape parameter is overestimated by at least 20%. 

Table 12.Optimal replacement times with minor changed in 

the Weibull shape parameters. 

Component 

Name 
Shape 

(real) 

Shape 

+10% 

Shape 

+20% 

Shape 

+30% 

Shape 

+40% 

Shape 

+50% 

Tire 13.81 13.85 13.86 13.88 13.89 13.90 

Transmission 5.77 8.78 5.79 5.80 5.80 5.81 

Wheel 3.96 3.99 4.01 4.02 4.03 4.04 

Coupling 7.92 7.95 7.98 8 8.02 8.04 

Motor 1.97 1.98 1.99 1.99 1.99 1.99 

Brake 22.38 22.47 22.54 22.60 22.67 22.68 

Steering 4.34 4.39 4.42 4.45 4.48 4.50 

Gears 11.88 11.89 11.90 11.92 11.94 11.95 

Fig. 5, Fig. 8 and Fig. 9 illustrate system downtime 

obtained by the traditional approach comparing with 

that of RL algorithms. As the figures show, the Weibull 

scale parameter overestimation from 2% to 5% 

increased the system downtime by 1 to 8 weeks in 

different strategies. Moreover, Table 13 shows how 

minor changes in the Weibull scale parameter affects the 

optimal replacement times that obtained through "Eq. 

(1)". 

Table 13.Optimal replacement times with minor changed in 

the Weibull scale parameter. 

 

 

 

Component 

Name 
Scale 

(real) 

Scale 

+1% 

Scale 

+2% 

Scale 

+3% 

Scale 

+4% 

Tire 13.81 13.96 14.11 14.23 14.38 

Transmission 5.77 5.83 5.89 5.92 6 

Wheel 3.96 3.99 4.05 4.08 4.12 

Coupling 7.92 7.98 8.07 8.16 8.21 

Motor 1.97 1.99 2.01 2.03 2.05 

Brake 22.38 22.62 22.86 23.07 23.27 

Steering 4.34 4.39 4..43 4.49 4.51 

Gears 11.88 11.99 12.11 12.20 12.34 

Fig. 4.System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy II 



8 / 
 

      
 

        Optimal Preventive Maintenance Policy for Non-Identical …              Shaghayegh Eidi, Abdollah Safari and … 

 

 
 

  

Fig. 6.System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy IV 

Fig. 5.System downtime of different approaches under minor changes in the Weibull scale parameters for Strategy II 

Fig. 7.System downtime of different approaches under minor changes in the Weibull shape parameters for Strategy III 
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Discussion 
In this work, we employed three approaches of 

traditional (renewal theory), MCRL, and TDRL in order 

to find the optimal preventive maintenance policy for an 

equipment composed of multi-non-identical 

components. Three preventive maintenance strategies 

along with a corrective maintenance strategy (as 

baseline) were studied. Our results confirmed that 

preventive maintenance strategies perform better than 

the corrective maintenance policy, as expected, for our 

system. More importantly, our results showed that the 

tradditional approach (renewal theory) is sensitive to the 

misspecification of the components’ failure time 

distribution. More specifically, under the assumption of  

the components Weibull distributed failure times, the 

optimal policy and consequently the performance of the 

traditional approach seem to be impacted only slightly 

by misspecifying the shape parameters up to 50% 

(downtime increased by < 3 days). However, even minor 

misspecification in the scale parameter (up to 5%) can 

lead to a huge increase in the system downtime 

following the traditional approach optimal policy by up 

to 8 weeks. On the other hand, since the model-free RL 

algorithms are data driven with no requirements of prior 

assumption on the environment distribution (e.g., failure 

time distributions), they can be minimally impacted by 

such misspecifications. 

Different RL algorithms, however, can potentially 

perform very differently. Under the assumptions of our 

study, QL algorithm outperformed MC algorithm 

dramatically. Given the quick progress in developing 

RL algorithms nowdays, a natural next step to our work 

might be evaluating different RL algorithms for 

different systems with different assumptions. 
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