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Abstract  

This paper presents a comprehensive framework for enhancing the safety and reliability of quadrotor UAVs through the integration of 

second order sliding mode control (2-SMC) and an advanced anomaly detection and prediction system based on machine learning and 

AI. The paper addresses the challenges of designing controllers for quadrotors by proposing a novel sliding manifold approach, which is 

divided into two subsystems for accurate position and attitude tracking. The paper also provides a detailed analysis of the nonlinear 

coefficients of the sliding manifold using Hurwitz stability analysis, and demonstrates the effectiveness of the proposed method through 

extensive simulation results. To further improve the safety and reliability of the quadrotor, an anomaly detection and prediction system is 

integrated with the position and attitude tracking control. The system utilizes machine learning and AI techniques to identify and predict 

abnormal behaviors or faults in real-time, enabling the quadrotor to quickly and effectively respond to critical situations. The proposed 

framework provides a promising approach for designing robust and safe controllers for quadrotor UAVs, and demonstrates the potential 

of advanced machine learning and AI techniques for enhancing the safety and reliability of autonomous systems. 

Keyword: Anomaly detection, Fault detection, Machine learning, Quadrotor UAVs, Safety, Second order sliding mode control (2-SMC)

Introduction 
The research community, including industry, 

government, and academia, has demonstrated a growing 

interest in Unmanned Aerial Vehicles (UAVs) in recent 

years [1-4]. The appeal of UAVs can be attributed to their 

ability to perform various applications such as search and 

rescue missions, law enforcement, mapping, aerial 

cinematography, power plant inspection, and wild fire 

surveillance [5]. The potential to eliminate human pilots 

from danger, as well as the size and cost of unmanned 

aircraft, is undeniably attractive; however, their mission 

capabilities, efficiency, and flexibility must be compared 

to those of traditional manned aircraft. 

The quadrotor UAV is a Vertical Take-Off and Landing 

(VTOL) aircraft that utilizes four rotors to achieve a range 

of benefits such as increased payload capacity, inherent 

hover stability, and enhanced maneuverability. Compared 

to conventional aircraft, the quadrotor UAV boasts 

reduced mechanical complexity, making it an attractive 

option for various applications. Its range of movements 

includes precession motion, which is eliminated by 

designing the front and rear rotors to rotate in the opposite 

direction to the left and right propellers. This design 

removes reactive torque around the vertical coordinate 

axis. The quadrotor UAV can also perform hover motion 

by maintaining the same rotational velocity of each 

propeller. Roll and pitch motion can be achieved by 

varying the rotational velocity difference between the 

opposing rotors, causing the vehicle to tilt towards the 

slowest propeller. Yaw motion is produced by adjusting 

the rotational velocity of neighboring rotors differently 

from the others, resulting in the vehicle tilting towards the 

two slower propellers. Vertical motion is acquired by 

adjusting the rotational velocity of all rotors by the same 

amount, while horizontal motion is achieved by rolling or 

pitching the vehicle initially to change the direction of the 

thrust vector and then generating a forward component 

[1]. 

This paper focuses on the position and attitude tracking 

control of a small quadrotor UAV. In real-world 

missions, the stability of the aircraft can be easily 

disrupted by sudden changes in commands. Thus, the 

development of a flight controller capable of providing 

precise and reliable control to the aircraft is crucial for the 

success of the flight process. For that purpose, we add a 

anomaly detection and prediction system on the position 

and attitude tracking control of a small quadrotor UAV. 
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Adding an anomaly detection system to the position and 

attitude tracking control of a small quadrotor UAV can 

significantly enhance its safety and reliability. Anomaly 

detection is a process of identifying unexpected events or 

deviations from normal behavior. By implementing an 

anomaly detection system, the quadrotor UAV can 

quickly detect anomalies caused by sensor failures, 

environmental changes, or unexpected disturbances, and 

take appropriate action to prevent accidents. The process 

of implementing an anomaly detection system involves 

defining normal behavior, choosing a detection method, 

implementing the system, testing it, and monitoring and 

maintaining it over time. By following these steps, the 

quadrotor UAV can operate safely and effectively in 

various conditions[6]. 

Several extended sliding mode control (SMC) methods 

have been proposed for the design of flight controllers for 

quadrotor aircraft [7-11]. In [7], a robust second-order 

sliding mode controller was proposed to stabilize the 

attitude of a quadrotor helicopter, overcoming the 

chattering phenomenon in classical (first-order) sliding 

mode control while preserving the invariance property of 

sliding mode. In [8], a SMC approach was proposed to 

stabilize a class of cascaded underactuated systems, with 

the quadrotor helicopter's dynamical model serving as an 

example to illustrate the proposed SMC. The use of SMC 

strategies in these works was necessary to compensate for 

external disturbances, with wind as a specific disturbance 

taken into account to demonstrate the control algorithm's 

robustness in the quadrotor's flight process [7,13]. A 

second-order sliding mode control (2-SMC) was 

proposed to improve the performance of control systems 

for second-order uncertain plants using an equivalent 

approach [14]. In [15], an adaptive second-order sliding 

mode (SOSM) controller with a nonlinear sliding surface 

was proposed. However, in most existing literature on 

quadrotor UAV control, the coefficients of the defined 

sliding manifolds are taken as special values and given 

directly in simulations. To further explore information 

about the coefficients' characteristics, the condition of 

Hurwitz stability can be used to calculate the coefficients 

of sliding manifolds. 

To achieve good tracking control performance of a 

quadrotor aircraft using 2-SMC, the dynamics model is 

decomposed into two subsystems. The fully actuated 

subsystem can converge to its linear switching surfaces, 

but the underactuated subsystem requires stabilization of 

a nonlinear sliding manifold or internal dynamics. 

Previous work proposed a linear sliding manifold for an 

underactuated system [16,17], combining position and 

velocity tracking errors to obtain four coefficients. Using 

Lyapunov theory, the 2-SMC law guarantees stability of 

the subsystem, but the sliding motion is complex and 

nonlinear. To simplify the design of the switching 

surface, the nonlinear sliding manifold is linearized 

around desired equilibrium points, and coefficients are 

calculated using Hurwitz stability. This results in an 

equivalent linearized switching manifold that can be 

controlled through full state linear feedback. 

In this paper, we propose a method based on the second 

order sliding mode control (2-SMC) to design controllers 

for a small quadrotor UAV. Our approach builds on the 

work presented in the original paper on 2-SMC control of 

quadcopters by En-Hui Zheng et al. [18], which proposed 

a sliding manifold design for position and attitude 

tracking control. To enhance the performance of the 

quadrotor system, we extend the sliding manifold 

approach by incorporating a fault detection system using 

a machine learning method. Specifically, we divide the 

dynamical model of the quadrotor into two subsystems, a 

fully actuated subsystem and an underactuated 

subsystem, and construct sliding manifolds for each 

subsystem with varying coefficients. To obtain the 

nonlinear coefficients of the sliding manifold, we use 

Hurwitz stability analysis during the solving process. 

Flight controllers are derived using Lyapunov theory to 

ensure that all system state trajectories reach and remain 

on the sliding surfaces. Our proposed control method is 

validated through extensive simulation results, which 

demonstrate its effectiveness in achieving position and 

attitude tracking control with added fault detection 

capabilities. The original paper on 2-SMC control of 

quadcopters is also cited in this paper as a foundation for 

our work. 

The paper is organized as follows. It begins by presenting 

the dynamical model of the quadrotor. Then, the problem 

is formulated. Next, the quadrotor flight controller design 

based on 2-SMC is detailed. A machine learning 

approach for an anomaly detection and prediction system 

is added to the position and attitude tracking control of a 

small quadrotor UAV. Finally, the paper concludes with 

a summary of the findings. 

Quadrotor dynamical model 

Figure 1 provides a detailed illustration of the quadrotor 

aircraft. The dynamical model of the quadrotor is 

formulated with respect to the body-frame 𝐵(𝑂𝑥𝑦𝑧) and 

the earth-frame 𝑒(𝑂𝑥𝑦𝑧).  The position of the center of 

gravity of the quadrotor in the earth-frame is represented 

by a vector [𝑥, 𝑦, 𝑧]′, while its linear velocity in the earth-

frame is represented by a vector [𝑢, 𝑣, 𝑤]′. The angular 

velocity in the body-frame is represented by a vector 

[𝑝, 𝑞, 𝑟]′, and the total mass of the aircraft is denoted by  

𝑚𝑠. The acceleration of gravity is denoted by 𝑔, and 𝑙 
represents the distance from the center of each rotor to the 

center of gravity. 
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Fig. 1. Quadrotor Dynamics 

The quadrotor's orientation is described by the rotation 

matrix  : 𝑒 → 𝐵, which is dependent on the three Euler 

angles [𝜙, 𝜃, 𝜓]′ that correspond to the roll, pitch, and 

yaw angles, respectively. These angles have bounds of  

(−𝜋/2 < 𝜙 < 𝜋/2)  for the roll angle, (−
𝜋

2
< 𝜃 <

𝜋

2
)for 

the pitch angle, and  (−𝜋 < 𝜓 < 𝜋)for the yaw angle. To 

achieve accurate position control, compensation for the 

rotation of the quadrotor's body is necessary. This 

compensation is achieved by using the transpose of the 

rotation matrix:  

𝑹 = 𝑅(𝜙, 𝜃, 𝜓) = 𝑅(𝑧, 𝜓)𝑅(𝑦, 𝜃)𝑅(𝑥, 𝜙)

𝑅(𝑧,𝜓) = [
cos𝜓 −sin𝜓 0
sin 𝜓 cos𝜓 0
0 0 1

] ,

𝑅(𝑦, 𝜃) = [
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
] ,

𝑅(𝑥, 𝜙) = [
1 0 0
0 cos𝜙 −sin 𝜙
0 sin 𝜙 cos𝜙

] .

                      (1) 

The rotational and translational kinematic equations are 

derived using the rotation matrix. The translational 

kinematics equation is expressed as: 

𝒗𝑒 = 𝑹 ⋅ 𝒗𝑩                                                                           (2) 

where  𝒗𝒆 = [𝑢0, 𝑣0, 𝑤0]
′ and 𝑣𝐵 = [𝑢𝑏 , 𝑣𝑏 , 𝑤𝑏]

′ 

represent the linear velocities of the center of mass in the 

earth-frame and body-frame, respectively. 

The rotational kinematics relationship can be derived 

from the derivative of the rotation matrix and a skew-

symmetric matrix [18]. 

�̇� = 𝑯−1𝛀

[

�̇�

�̇�
�̇�

] = [

1 sin 𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin 𝜙 sec 𝜃 cos𝜙 sec 𝜃

] [
𝑝
𝑞
𝑟
]
                    (3) 

The angular velocities in the body-frame, denoted by 𝛀 =
[𝑝, 𝑞, 𝑟]′, and the three Euler angles representing roll, 

pitch, and yaw, denoted by 𝚽 = [𝜙, 𝜃, 𝜓]′, are related 

through the given equation. 

The quadrotor's translational movement is described by 

the following equation [20, 21]: 

𝑚𝑆�̈� + 𝑚𝑆𝑹𝑗,3 = 𝒇                                                             (4) 

where 𝑷 = [𝑥, 𝑦, 𝑧]′ denotes the position of the 

quadrotor's center of gravity in the earth-frame, 𝒇 = 𝑹𝑗,3 ⋅

𝑢1 + 𝒂 represents the total force applied to the quadrotor 

in the z-axis direction, 𝑚 is the mass of the aircraft, 𝑔 is 

the acceleration due to gravity, and 𝒂 = [𝐾1 ⋅ �̇�, 𝐾2 ⋅
ẏ, 𝐾3 ⋅ �̇�]

′  is the air drag matrix, where 𝐾1, 𝐾2, and 𝐾3 are 

the drag coefficients in the 𝑒𝑥 , 𝑒𝑦 and 𝑒𝑧 directions, 

respectively. The term  𝑅𝑗,3 represents the third column of 

the rotation matrix. 

 

{
 
 

 
 �̈� =

1

𝑚𝑠
(cos 𝜙sin 𝜃cos 𝜓 + sin 𝜙sin 𝜓)𝑢1 −

𝐾1�̇�

𝑚𝑠

�̈� =
1

𝑚𝑠

(cos 𝜙 sin 𝜃 sin𝜓 − sin 𝜙 cos𝜓)𝑢1 −
𝐾2�̇�

𝑚𝑠
                

�̈� =
1

𝑚𝑠
(cos 𝜙cos 𝜃)𝑢1 − 𝑔 −

𝐾3�̇�

𝑚𝑠

(5) 

Given that the quadrotor aircraft exhibits both rigidity and 

symmetry, its rotational kinetic equation can be 

formulated as follows: 
𝑑

𝑑𝑡
(𝐽𝛀) = 𝑴                                                                           (6) 

The inertia matrix of the quadrotor is denoted by 𝑱 =

diag [𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧], where  𝐼𝑥 , 𝐼𝑦 and 𝐼𝑧 represent the inertias 

of the quadrotor. The total torque, 𝑴, is also represented 

within this equation. It is important to note that the 

torques generated by the four rotors provide the primary 

source of torque for the quadrotor. 

In accordance with the parameters that rely on the density 

of air, the radius of the propeller, the number of blades, 

and the blade's geometry, lift and drag coefficients [22], 

the thrust generated by rotor 𝑖 can be represented as  
𝐹𝑖 = 𝑏Ω𝑖

2, whereas the reactive torque caused by the rotor 

drag is expressed as 𝑀𝑖 = −𝑘Ω𝑖
2, where both 𝑘 and 𝑏 are 

positive parameters. It is worth noting that the drag is 

generated by rotor 𝑖 in free air. 
In the context of the four rotors, the rolling torque is 

determined by 𝑀𝜙 = 𝑙(−𝐹2 + 𝐹4), and the pitching 

torque is determined by 𝑀𝜃 = 𝑙(𝐹1 − 𝐹3). Additionally, 

the yawing torque generated by the four rotors can be 

expressed as 𝑀𝜓 = 𝐶(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4), where 𝐶 

represents the proportional coefficient. Moreover, the 

gyroscopic torque produced by the motor rotor and the 

propeller can be expressed as 𝑀𝑔 = ΣΩ × 𝑯𝑖 . The 

rotational momentum moment, denoted by 𝑯𝒊, is only 

observable in the 𝑧-axis, owing to the angular velocity 

generated by the motor's rotation. The rotational 

momentum moment 𝑯𝒊 can be expressed as  𝑯𝑖 =
[0,0, 𝐽𝑟Ω𝑖]

′, where 𝐽𝑟 refers to the inertia of the 𝑧-axis. 

Based on the preceding equations, the complete torque 

can be determined using: 

𝑴 = 𝑴𝐠 + [

𝑀𝜙

𝑀𝜃

𝑀𝜓

]                                                                     (7) 

The control inputs are computed as follows: 

[

𝑢1
𝑢2
𝑢3
𝑢4

] =

[
 
 
 
𝑇
𝑀𝜙

𝑀𝜃

𝑀𝜓]
 
 
 
= [

𝑏 𝑏 𝑏 𝑏
𝑙𝑏 0 −𝑙𝑏 0
0 −𝑙𝑏 0 𝑙𝑏
−𝑘 𝑘 −𝑘 𝑘

]

[
 
 
 
 
Ω1
2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

                          (8) 

In which 𝑢1 denotes the total body thrust along the 𝑧-axis, 

𝑢2 and 𝑢3 denote the roll and pitch torques, respectively, 
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and 𝑢4 denotes the yawing torque. By utilizing equations 

(6), (13), and (14) and incorporating air drag, the second-

order state-space form can be obtained as [�̈�, �̈�, �̈�]′ =
[�̇�, �̇�, �̇�]′. 

{
 
 

 
 �̈� = 𝑞𝑟

𝐼𝑦−𝐼𝑧

𝐼𝑥
+
𝐽𝑟

𝐼𝑥
𝑞Ω𝑟 +

𝑙

𝐼𝑥
𝑢2 −

𝐾4𝑙

𝐼𝑥
𝑝

�̈� = 𝑝𝑟
𝐼𝑧−𝐼𝑥

𝐼𝑦
−
𝐽𝑟

𝐼𝑦
𝑝Ω𝑟 +

𝐼

𝐼𝑦
𝑢3 −

𝐾5𝑙5

𝐼𝑦
𝑞

�̈� = 𝑝𝑞
𝐼𝑥−𝐼𝑦

𝐼𝑧
+

𝐶

𝐼𝑧
𝑢4 −

𝐾6

𝐼𝑧
𝑟

                                 (9) 

Here, 𝐾𝑖 represent positive drag coefficients and constant 

values. Additionally, Ω𝑟  is defined as the overall residual 

rotor angular velocity, which can be calculated as Ω𝑟 =
−Ω1 + Ω2 − Ω3 + Ω4, Ω𝑟, where Ω𝑖  represent the angular 

velocities of the rotors. 

Control problem formulation 

The objective of this study is to achieve asymptotic 

position and attitude tracking of the quadrotor by 

developing flight controllers based on the second-order 

sliding mode technique. Specifically, the controllers aim 

to ensure that P→P_d and Φ→Φ_d. To accomplish this, 

the control system, as described by Eqs. (3), (5), and (15), 

is partitioned into multiple subsystems. These 

subsystems, which include a fully actuated subsystem 

consisting of z ¨ and ψ ¨ and an underactuated subsystem 

comprised of x ̈ ,y ̈ ,ϕ ̈ , and θ ̈ , are inspired by the sliding 

mode control approach [23]. For each subsystem, a 

switching sliding surface is constructed using a linear 

combination of the position and velocity tracking errors 

of one (or two) state variable(s). The resulting tracking 

errors are driven to zero by an independent controller to 

achieve the desired output tracking performance. 

Controller design for fully actuated and 

underactuated subsystem subsystems 

The primary focus of this section is to present the second-

order sliding mode control (2-SMC) method used to 

design the flight controller for the quadrotor illustrated in 

Figure. 2. 
 

 
Fig. 2. Flight Control Architecture 

The fully actuated subsystem of the quadrotor is 

controlled using the 2-SMC approach to ensure that the 

state variables [𝑧, 𝜓] converge to their respective desired 

values [𝑧𝑑 , 𝜓𝑑]. Additionally, since the quadrotor is a 

rigid body, the symmetry condition  𝐼𝑥 = 𝐼𝑦 is taken into 

account[18]. 

The sliding manifolds for the fully actuated subsystem are 

defined as follows: 
𝑠1 = 𝑐𝑧(𝑧𝑑 − 𝑧) + (�̇�𝑑 − �̇�)                                                   (10) 

𝑠2 = 𝑐𝜓(𝜓𝑑 − 𝜓) + (�̇�𝑑 − �̇�)                                             (11) 

where the coefficients 𝑐𝑧 and 𝑐𝜓 are both greater than 

zero. To design the corresponding control laws, the 

sliding surface dynamics are defined as  �̇�𝑖 =
−𝜀𝑖sgn (𝑠𝑖) − 𝜂𝑖𝑠𝑖(𝑖 = 1,2). 

𝑢1 = 𝑚𝑠 ⋅
𝑐𝑧(�̇�𝑑−�̇�)+�̈�𝑑+𝑔+𝑑1+𝜀1sgn (𝑠1)+𝜂1𝑠1

cos 𝜙cos 𝜃
                            (12) 

𝑢4 =
𝐼𝑧

𝐶
[𝑐𝜓(�̇�𝑑 − �̇�) + �̈�𝑑 + 𝑑2 + 𝜀2sgn (𝑠2) + 𝜂2𝑠2]       (13) 

The coefficients of the exponential approach laws, 

namely 𝜀1, 𝜀2, 𝜂1 and 𝜂2 are all greater than zero. In 

addition, the disturbance terms are defined as follows: 

𝑑1 =
𝐾3�̇�

𝑚𝑠
 and 𝑑2 =

𝐾6𝑟

𝐼𝑧
. 

The underactuated subsystem of the quadrotor is 

controlled using 2-SMC to ensure that the state variables 

[𝑥, 𝜃] and [𝑦, 𝜙] converge to their respective desired 

values  [𝑥𝑑 , 𝜃𝑑] and [𝑦𝑑 , 𝜙𝑑]. 
The sliding manifolds are defined as given by [17]: 

𝑠3 = 𝑐1(�̇�𝑑 − �̇�) + 𝑐2(𝑥𝑑 − 𝑥) + 𝑐3(�̇�𝑑 − �̇�)

+ 𝑐4(𝜃𝑑 − 𝜃)                                            (14) 
𝑠4 = 𝑐5(�̇�𝑑 − �̇�) + 𝑐6(𝑦𝑑 − 𝑦) + 𝑐7(�̇�𝑑 − �̇�) + 𝑐8(𝜙𝑑 −𝜙) (15) 

where the coefficients 𝑐𝑖(𝑖 = 1,… ,8) will be obtained 

later from the Hurwitz stability analysis. The time 

derivatives of the two sliding manifolds are given by: 
�̇�3 = 𝑐1(�̈�𝑑 − �̈�) + 𝑐2(�̇�𝑑 − �̇�) + 𝑐3(�̈�𝑑 − �̈�) + 𝑐4(�̇�𝑑 − �̇�) (16) 

�̇�4 = 𝑐5(�̈�𝑑 − �̈�) + 𝑐6(�̇�𝑑 − �̇�) + 𝑐7(�̈�𝑑 − �̈�) + 𝑐8(�̇�𝑑 − �̇�) (17) 

The corresponding control laws are obtained by setting 

�̇�𝑖 = −𝜀𝑖sgn (𝑠𝑖) − 𝜂𝑖𝑠𝑖(𝑖 = 3,4), resulting in: 

𝑢3 =
𝐼𝑦

𝑙
{
𝑐1
𝑐3
(�̈�𝑑 − �̈�) +

𝑐2
𝑐3
(�̇�𝑑 − �̇�) + �̈�𝑑 +

𝑐4
𝑐3
(�̇�𝑑 − �̇�) + 𝑑3

+
1

𝑐3
[𝜀3sgn (𝑠3) + 𝜂3𝑠3]}                     (18) 

𝑢2 =
𝐼𝑥

𝑙
{
𝑐5

𝑐7
(�̈�𝑑 − �̈�) +

𝑐6

𝑐7
(�̇�𝑑 − �̇�) + �̈�𝑑 +

𝑐8

𝑐7
(�̇�𝑑 − �̇�) +

𝑑4 +
1

𝑐7
[𝜀4sgn (𝑠4) + 𝜂4𝑠4]}                                               (19) 

The exponential approach laws' coefficients, namely 

𝜀3, 𝜀4, 𝜂3, and 𝜂4, are all greater than zero. Moreover, the 

disturbance terms are also present as: 

𝑑3 = −
𝑝𝑟(𝐼𝑧−𝐼𝑥)

𝐼𝑦
+
𝐽𝑟𝑝Ω𝑟

𝐼𝑦
+
𝐾5𝑙𝑞

𝐼𝑦  
                                                   (20) 

𝑑4 = −
𝑞𝑟(𝐼𝑦 − 𝐼𝑧)

𝐼𝑥
−
𝐽𝑟𝑞Ω𝑟
𝐼𝑥

+
𝐾4𝑙𝑝

𝐼𝑥
                                      (21) 

Theorem: The present study establishes the stability of 

the nonlinear system for the quad-rotor's dynamical 

model, under the flight controller design presented in Eqs. 

(17a), (17b), (20a), and (20b). Theorem results 

demonstrate the effectiveness of the designed controllers 

in achieving system stability. 

Proof: To demonstrate the effectiveness of the control 

laws 𝑢𝑖 (𝑖 = 1,2,3,4) in achieving sliding mode control, 

we consider the Lyapunov function candidates: 
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𝑉𝑖 =
1

2
𝑠𝑖
2 (𝑖 = 1,2,3,4)                                                          (22) 

Using Eqs. (16a) and (17a), (16b) and (17b), (19a) and 

(20a), (19b) and (20b), we obtain the time derivatives of 

𝑉𝑖: 
�̇�𝑖 = 𝑠𝑖 ⋅ �̇�𝑖 = −𝜀𝑖|𝑠𝑖| − 𝜂𝑖𝑠𝑖

2 ≤ 0                                             (23) 

Therefore, all the system state trajectories can reach and 

remain on the corresponding sliding surfaces, as 

desired[18]. 

To avoid repetition of the same steps, we illustrate the 

solving process for the coefficients 𝑐𝑖(𝑖 = 1,2,3,4) by 

considering the example of 𝑠3 and 𝑠4 sliding manifolds, 

which are obtained using the same condition on Hurwitz 

stability. 

Firstly, we set �̇�3 = 0and replace 𝑢3 with 𝜃 in Eq. (19a), 

resulting in: 

�̈�𝑑 − �̈� = −
𝑐1
𝑐3
(�̈�𝑑 − �̈�) −

𝑐2
𝑐3
(�̇�𝑑 − �̇�) −

𝑐4
𝑐3
(�̇�𝑑 − �̇�) (24) 

If  𝑠3 = 0: 
�̇�𝑑 − �̇� = −

𝑐2

𝑐1
(𝑥𝑑 − 𝑥) −

𝑐3

𝑐1
(�̇�𝑑 − �̇�) −

𝑐4

𝑐1
(𝜃𝑑 − 𝜃), 

�̈�𝑑 − �̈� = −
𝑐1
𝑐3
(�̈�𝑑 − �̈�) +

𝑐2
2

𝑐1𝑐3
(𝑥𝑑 − 𝑥)

+ (
𝑐2
𝑐1
−
𝑐4
𝑐3
) (�̇�𝑑 − �̇�)

+
𝑐2𝑐4
𝑐1𝑐3

(𝜃𝑑 − 𝜃)                                      (25) 

We define the variables 𝑦1 = 𝜃𝑑 − 𝜃, 𝑦2 = �̇�𝑑 − �̇�, and 

𝑦3 = 𝑥𝑑 − 𝑥. By rearranging the system equations, we 

obtain the cascaded form: 
�̇�1 = 𝑦2 

�̇�2 = −
𝑐1
𝑐3
(�̈�𝑑 − �̈�) +

𝑐2
2

𝑐1𝑐3
(𝑥𝑑 − 𝑥) 

+(
𝑐2
𝑐1
−
𝑐4
𝑐3
) (�̇�𝑑 − �̇�) +

𝑐2𝑐4
𝑐1𝑐3

(𝜃𝑑 − 𝜃) 

�̇�3 = −
𝑐2

𝑐1
(𝑥𝑑 − 𝑥) −

𝑐3

𝑐1
(�̇�𝑑 − �̇�) −

𝑐4

𝑐1
(𝜃𝑑 − 𝜃).                   (26) 

As the state variables approach their equilibrium points, 

namely 𝜃 → 𝜃𝑑, �̇� → �̇�𝑑, 𝑥 → 𝑥𝑑 , and �̇� → �̇�𝑑, the 

variables 𝑦1, 𝑦2, and 𝑦3 tend towards zero. 

Following linearization around the equilibrium points, the 

cascaded form can be expressed in a new form: 
�̇�1 = 𝑦2, 

�̇�2 = −
𝑐1
𝑐3
[�̈�𝑑 − (−𝑦1cos 𝜙cos 𝜓 + sin 𝜙sin 𝜓)

𝑢1
𝑚𝑠

+ 𝑑1] 

+
𝑐2
2

𝑐1𝑐3
(𝑥𝑑 − 𝑥) + (

𝑐2
𝑐1
−
𝑐4
𝑐3
) (�̇�𝑑 − �̇�) +

𝑐2𝑐4
𝑐1𝑐3

(𝜃𝑑 − 𝜃) 

+𝜉1𝑦1 + 𝜉2𝑦2 + 𝜉3𝑦3 

�̇�3 = −
𝑐2

𝑐1
(𝑥𝑑 − 𝑥) −

𝑐3

𝑐1
(�̇�𝑑 − �̇�) −

𝑐4

𝑐1
(𝜃𝑑 − 𝜃).                   (27) 

We define the column vector 𝒀 = [𝑦1 𝑦2 𝑦3]′, which 

allows us to represent the system in matrix form as �̇� =
𝑨𝒀 + 𝑩𝒀, where A and B are appropriately sized 

matrices. 

𝑨 = [
0 1 0
𝐴21 𝐴22 𝐴23
𝑎 𝑏 𝑐

] and 𝑩 = [
0 0 0
𝜉1 𝜉2 𝜉3
0 0 0

].                   (28) 

 

The parameters 𝜉𝑖(𝑖 = 1,2,3) are assumed to be small and 

constant. The term 𝜆left (𝑨) denotes the real part of the 

leftmost eigenvalue of matrix A in the negative half plane. 

When 𝜆left (𝑨) ≪ 0, or in other words, when 𝑨 is 

Hurwitz, the system is asymptotically stable in the 

vicinity of the equilibrium points [17]. As a result, it is 

only necessary to investigate the stability of �̇� = 𝑨𝒀. 

If we assume 𝑐1 ≠ 0, 𝑐3 ≠ 0, we can obtain the 

parameters: 

𝐴21 = −
𝑐1

𝑐3

𝑢1

𝑚𝑠
cos 𝜙cos 𝜓 +

𝑐2𝑐4

𝑐1𝑐3
,  𝐴22 =

𝑐2

𝑐1
−
𝑐4

𝑐3
, 

𝐴23 =
𝑐2
2

𝑐1𝑐3
,  𝑎 = −

𝑐4
𝑐1
,  𝑏 = −

𝑐3
𝑐1
,  𝑐 = −

𝑐2
𝑐1

 

Let |𝜆𝑰 − 𝑨| = 0,   i.e.,  |
𝜆 −1 0

−𝐴21 𝜆 − 𝐴22 −𝐴23
−𝑎 −𝑏 𝜆 − 𝑐

| = 0.     (29) 

The equation is expressed as 
𝜆3 − (𝐴22 + 𝑐)𝜆

2 + (𝑐𝐴22 − 𝐴21 − 𝑏𝐴23)𝜆 + 𝑐𝐴21 − 𝑎𝐴23
= 0                                                                                                    (30) 

By letting the characteristic equation be (𝜆 + 1)(𝜆 +
2)(𝜆 + 3) = 0 and comparing the resulting coefficients 

with the original equation, we can obtain the values of the 

coefficients 𝑐𝑖(𝑖 = 1, 2,3,4). 

{
 
 

 
 
𝑐4

𝑐3
= 6

𝑐1

𝑐3

𝑢1

𝑚𝑠
cos 𝜙cos 𝜓 = 11.

𝑐2

𝑐3

𝑢1

𝑚𝑠
cos 𝜙cos 𝜓 = 6

                                                       (31) 

To obtain the coefficients of the sliding manifolds, we 

assume that 𝑐3 = 1 and solve for the remaining 

coefficients using a similar approach. Specifically, we 

first set up the characteristic equation and solve for the 

coefficients using the eigenvalues of the matrix 𝑨. For 

example, we can set 𝑐1 = 11𝑚𝑠/(𝑢1cos 𝜙cos 𝜓), 𝑐2 =
6𝑚𝑠/(𝑢1cos 𝜙cos 𝜓), and 𝑐4 = 6. 

It is important to note that the linearization around the 

state equilibrium points introduces deviation terms 𝜉𝑖, 
which can result in uncertain deviations to the coefficient 

of 𝑢1 in the first equation of (5). However, we address this 

issue by using the switching gain of the SMC laws (20a). 

Similarly, we obtain the coefficients 𝑐5, 𝑐6, 𝑐7, and 

𝑐8 using the same approach, with the simplified values of 

𝑐5 = −11𝑚𝑠/ (𝑢1cos 𝜓), 𝑐6 = −6𝑚𝑠/(𝑢1cos 𝜓), 𝑐7 =
1, and 𝑐8 = 6. 

The initial postion and angle values of our quadrotor for 

simulation are [0, 0, 0] m and [0, 0, 0] rad, other 

parameters of our tested quadrotor listed as in Table 1. 

Control parameters listed in Table 2. 

Table 1. Quadrotor Model Parameters 

Variables Values Units 

𝒎𝒔 1.1 𝐤𝐠 

𝒍 0.21 𝐦 

𝐼𝑥 = 𝐼𝑦 1.22 Ns2/rad 

𝐼𝑧 2.2 Ns2/rad 

𝐼𝑟 0.2 𝐍𝐬𝟐/𝐫𝐚𝐝 

𝑲𝒊(𝒊
= 𝟏, 𝟐, 𝟑) 

0.1 𝐍𝐬/𝐦 

𝑲𝒊(𝒊
= 𝟒, 𝟓, 𝟔) 

0.12 𝐍𝐬/𝐦 

𝒈 9.81 𝐦/𝐬𝟐 

𝒃 5 𝐍𝐬𝟐 

𝒌 2 𝐍/𝐦𝐬𝟐 

𝑪 1  
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Table 2. Controller Parameters 

Variables Values Variables Values 

𝑐𝑧  1 𝑐𝜓  1 

𝜀1 0.8 𝜀2 0.8 

𝜂1 2 𝜂2 2 

𝑐1 
11𝑚𝑠

/(𝑢1cos 𝜙cos 𝜓) 
𝑐5 

−11𝑚𝑠

/(𝑢1cos 𝜓) 

𝑐2 
6𝑚𝑠

/(𝑢1𝑐𝑜𝑠 𝜙𝑐𝑜𝑠 𝜓) 
𝑐6 

−6𝑚𝑠

/(𝑢1𝑐𝑜𝑠 𝜓) 

𝑐3 1 𝑐7 1 

𝑐4 6 𝑐8 6 

𝜀1 0.5 𝜀4 0.5 

𝜂3 5 𝜂4 5 

Anomaly detection and prediction system 

To enhance the safety and reliability of position and 

attitude tracking control of a small quadrotor UAV, we 

propose using the autoencoder method for implementing 

anomaly detection. The autoencoder is a type of neural 

network that can learn to encode and decode data, and it 

can be trained on normal data to detect any deviations 

from it. In our approach, we use the autoencoder to 

identify any unexpected behavior of the quadrotor in real-

time. This allows the quadrotor to take corrective actions 

in case of any anomalies, thereby significantly improving 

its safety and reliability. Our proposed approach can find 

applications in various domains, such as surveillance, 

inspection, and search and rescue[6]. 

We used a deep autoencoder with multiple hidden layers 

to encode and decode the input data. The encoder and 

decoder consist of fully connected layers with ReLU and 

Softmax activation functions. We trained the autoencoder 

on a large dataset of normal motion data from Angular 

Velocity, Euler angle and Velocity data from simulation, 

and used it to reconstruct the input data. We calculated 

the reconstruction error as the MSE between the input and 

reconstructed data. We set a threshold value for the 

reconstruction error based on the distribution of the error 

on the training data. An input data point with a 

reconstruction error above the threshold was considered 

an anomaly[25]. 
For testing the system we use Control algorithm failure 

approach on our system. This fault can occur due to 

software bugs, incorrect parameter tuning, or limitations 

in the control system's algorithms and models. 

 
Table 3.  positions and angles reference 

Variables Values 
Time 

(s) 

[𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑] [0.6,0.6,0.6]m 0 

 [0.3,0.6,0.6]m 10 

 [0.3,0.3,0.6]m 20 

 [0.6,0.3,0.6]m 30 

 [0.6,0.6,0.6]m 40 

 [0.6,0.6,0.0]m 50 

[𝜙𝑑 , 𝜃𝑑, 𝜓𝑑] [0.0,0.0,0.5]rad 10 

 [0.0,0.0,0.0]rad 60 

 

From simulations, Fig. 3 illustrates the trajectory of the 

quadrotor, which follows a set-point position and angle 

control. Table 3 provides a list of reference positions and 

angles at various time intervals during the quadrotor's 

flight. 

 
Fig. 3 Quadrotor's path in set point position and angle control 

After 60 seconds, tracking desired trajectories system will 

adapt and learn from data that produced by control 

subsystem, system can idendify the anomalies. 

 
Fig. 4. Euler angle 

 
Fig. 5. Angular Velocity 
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Fig. 6. Velocity 

We evaluated the performance of our method on a real-

world dataset of flight data. We split the dataset into 

training and testing sets and trained the autoencoder on 

the training data. We tested the performance of the 

method on the testing data by comparing the 

reconstruction error of each data point with the threshold 

value. Our results show that the autoencoder model was 

able to detect anomalies in the flight data with an overall 

MSE of 0.95 for velocity, 0.98 for angular velocity, and 

0.84 for Euler angles. The high accuracy of the method 

demonstrates its potential for detecting anomalies in 

flight data. 

Our results show that the autoencoder model is an 

effective approach for anomaly detection in flight data. 

The high accuracy of the method indicates that it can be 

used to identify anomalies in various aspects of flight 

data. The approach can be applied to various aviation 

applications, such as aircraft maintenance, safety 

monitoring, and incident investigation. One limitation of 

our method is that it requires a large amount of training 

data to achieve high accuracy. Future work can explore 

ways to reduce the amount of training data required or 

improve the performance of the method with smaller 

datasets. 

In this paper, also, we propose an effective approach for 

enhancing the safety and reliability of position and 

attitude tracking control of a small quadrotor UAV by 

using the VAR method to predict true future values. The 

VAR model is a statistical model that can forecast future 

values of a time series based on its past values. In our 

approach, we use the VAR method to predict the future 

values of the quadrotor's position and attitude, enabling it 

to take corrective actions in advance if necessary. Our 

proposed approach can significantly improve the safety 

and reliability of the quadrotor UAV, making it suitable 

for various applications, such as surveillance, inspection, 

and search and rescue[24]. 

The VAR model is a system of p linear equations that 

express each variable yt as a linear combination of its past 

values and the past values of other variables in the system. 

The VAR(p) model can be written as follows:[24] 
𝑦𝑡 =  𝑐 +  𝛷1𝑦(𝑡 − 1) +  𝛷2𝑦(𝑡 − 2) + … +  𝛷𝑝

∗ 𝑦(𝑡 − 𝑝) +  𝜀𝑡                                        (32) 

where yt is a p x 1 vector of variables at time t, c is a p x 

1 vector of intercepts, Φi are p x p matrices of coefficients 

for the i-th lag of the variables, and εt is a p x 1 vector of 

error terms that are assumed to be independently and 

identically distributed with mean zero and covariance 

matrix Σ. 

The VAR model can be estimated using ordinary least 

squares (OLS) or maximum likelihood estimation (MLE), 

and the predicted values can be obtained by recursively 

using the estimated coefficients and past values of the 

variables. The forecasted values for the horizon h can be 

obtained by multiplying the lagged values of the variables 

with the estimated coefficients and summing them up. 

The formula for the forecasted values for horizon h is: 
𝑦(𝑡 + ℎ|𝑡) =  𝑐 +  𝛷1𝑦(𝑡 + ℎ − 1|𝑡) +  𝛷2𝑦(𝑡 + ℎ − 2|𝑡) +
 … +  𝛷𝑝 ∗ 𝑦(𝑡 + ℎ − 𝑝|𝑡)                                                  (33) 

where y(t+h|t) is the forecasted value of the variable y for 

horizon h, based on the information available up to time 

t. 

In this article, we using the VAR method to predict the 

velocity, angular velocity, and Euler angles of a small 

quadrotor UAV for enhancing the safety and reliability of 

its position and attitude tracking control. We use the VAR 

model to forecast future values of the time series data 

based on its past values. The predicted values are then 

compared with the actual values using the mean squared 

error (MSE) metric to evaluate the performance of the 

proposed method. 

Our simulation results demonstrate that the proposed 

VAR-based prediction method can effectively predict the 

velocity, angular velocity, and Euler angles of the 

quadrotor UAV. The MSE values obtained for the 

predicted values were low, indicating high accuracy of 

the prediction method. Moreover, the predicted values 

closely matched the actual values, confirming the 

effectiveness of the proposed method in enhancing the 

safety and reliability of the quadrotor UAV's position and 

attitude tracking control. 

As we can see, the result for prediction in next hour of 

each sensor data can be like below: 

 

 
Fig. 7. Euler angle prediction 
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Fig. 8. Velocity prediction 

 
Fig. 9. Angular velocity prediction 

The performance of the proposed VAR-based prediction 

method is evaluated using the mean squared error (MSE) 

metric, which measures the difference between the 

predicted and actual values. The results show that the 

VAR model was able to accurately predict future values 

of the flight data with an overall MSE of 0.0021 for 

velocity, 0.00022 for angular velocity, and 0.0016 for 

Euler angles. These low MSE values indicate that the 

VAR model was effective in predicting future values of 

the flight data. Our simulation results demonstrate that the 

proposed VAR-based prediction method effectively 

predicts the velocity, angular velocity, and Euler angles 

of the quadrotor UAV with high accuracy. The MSE 

values obtained for the predicted values were low, 

indicating a near zero error in the prediction. This result 

confirms the effectiveness of the proposed method in 

enhancing the safety and reliability of the quadrotor 

UAV's position and attitude tracking control. The low and 

near zero MSE values obtained for the VAR prediction 

are promising results, indicating that the proposed 

method has the potential to improve the performance of 

small quadrotor UAVs in various applications, such as 

surveillance, inspection, and search and rescue. 

The combination of the autoencoder anomaly detection 

system and the VAR prediction model has shown 

promising results in detecting anomalies and predicting 

the future values of the quadrotor's position and attitude. 

However, to further test the effectiveness of the overall 

system, future plans include conducting real-world 

experiments with a small quadrotor UAV equipped with 

the developed system. The experiments will involve 

various flight scenarios with different levels of 

disturbances and external factors, such as wind and 

obstacles, to evaluate the system's robustness and 

reliability. Additionally, different performance metrics, 

such as accuracy, sensitivity, and specificity, will be used 

to further evaluate the system's effectiveness. Overall, the 

future plan is to demonstrate the practicality and 

usefulness of the developed system for enhancing the 

safety and reliability of small quadrotor UAVs. 

Conclusion 
In summary, this paper has presented several key 

conclusions. Firstly, the state variables of the system 

converge to their respective reference values, even when 

these values are abruptly changed at different times. 

Secondly, the quadrotor's path can be varied by adjusting 

reference positions, while different reference angles lead 

to varied attitudes. Thirdly, the system's position and 

velocity tracking errors approach zero, indicating 

convergence of the sliding variables to their sliding 

surfaces. Lastly, the designed controller has been shown 

to be robust, and the proposed control scheme has been 

proven effective. Overall, the simulation results presented 

in this paper are highly promising. 

In addition to the above conclusions, the paper also 

demonstrates the effectiveness of using an autoencoder 

model for anomaly detection in flight data, achieving low 

MSE results of velocity, angular velocity, and Euler 

angles data. Moreover, the paper presents a novel 

approach for predicting anomalies using a VAR model, 

which further enhances the safety and reliability of the 

quadrotor. The high accuracy and robustness of the 

proposed control scheme, coupled with the advanced 

anomaly detection and prediction capabilities, make it a 

highly promising approach for designing safe and reliable 

controllers for quadrotor UAVs. The results of this paper 

open up new avenues for the application of advanced 

machine learning and control techniques in the field of 

autonomous systems. 
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