
 

Reliability centered maintenance of railway 

infrastructures-Turnout case study 

Kaveh mehrzad1*, Shervan Ataei 2 

1-Avand Barzin Knowledge enterprise, Tehran, Iran  

2-Railway school, Iran university of science and technology, Tehran, Iran  

 

  

* Kaveh906@yahoo.com  

Abstract  

 Due to the importance of the fundamental role of turnouts in network operations and their higher vulnerability than other assets, turnout 

condition monitoring is necessary for reliability centered maintenance. Along with periodic visual inspections, real-time infrastructure 

condition detection can help to introduce the performance of the structure so that infrastructure maintenance is more reliable. A new 

approach for railway turnout pass-by condition detection is provided based on statistical process control (SPC) of damage-sensitive 

features (DSF) using switchblade lateral displacement (BLD) measurements.  BLD time series data is modeled using a neural network 

model for the extraction of DSF. This approach is applied to 33 passenger trains. The results of the proposed approach are validated by 

analysis of BLD and switch rod force sensor outputs. This method can be applied in turnout short-term condition monitoring for condition 

detection that can lead to preventive maintenance, proper track operation management, and increased reliability. 
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Introduction 
Turnouts are vital elements of the rail network as they are 

responsible for guiding rail traffic. Due to certain geometry 

of rail and complicated interaction of train- track in switch 

and crossing panels of turnout, these parts are very attractive 

in studies to prevent failure in railway system. There are 

several studies to simulate the dynamics of the vehicle's 

passage over the crossing panel [1-3] and field 

measurements of the crossing panel [4-6] to investigate 

impacts induced in crossing by vehicle passing. A method 

to investigate the dynamic response of railway crossing 

based on acceleration and strain measurements was 

introduced in [4]. In another field study using nose rail 

acceleration measurements, impact acceleration was 

introduced as an indicator for evaluation of crossing 

conditions [5]. Wheel set lateral displacements were 

measured in a study and critical wheelsets were specified in 

switch and crossing panels by comparing measured 

displacements with frequency in switch and crossing panels 

[6].  

Unlike the crossing panel in the switch panel area, relatively 

little numerical and field work has been done in the 

technical literature. However, this area is also a sensitive 

and accident-prone area due to the complex interaction of 

wheel and rails and is of great importance in terms of 

maintenance. Wear of switch/stock rail, soft spots and 

plastic deformations are some common failures/defects in 

switch panels [7]. 

Some numerical studies in switch panel were presented in 

[8-9]. In [8] effect of the vertical relative motion of 

stock/switch rails on wheel–rail contact mechanics in a 

numerical study was investigated. Different non-Hertzian 

modeling approaches in wheel/rail contact problems were 

evaluated in [9]. From the numerical works, it can be found 

that the contact between the wheel and the rail is complex 

in the switch panel and is associated with the impacts 

caused by the transfer of the wheel from the stock rail to the 

blade rail. 

In the static state, the gap between the blade and the stock 

rail in the close position is a key parameter of the switch 

health and in some standards such as [10] certain limits have 

been set for this parameter. However, this parameter has not 

been limited in the dynamic state while the train is passing 

from turnout. The blade vibration caused by the contact 

forces of the wheels occurs due to the placement of the 

blade on the switch base plate. Therefore, the measurement 

of the size and pattern of blade displacements can be a 

measure of the turnout interaction response to vehicle 

passage. 
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In this study, Monitored BLDs has been used to identify the 

condition of wheel/rail interactions in switch panel due to 

passing vehicles.  

The use of statistical process control (SPC) methods in the 

vibration-based fault detection is a common method in 

literature review. Reference [11] uses a statistical process 

control framework to support structural health monitoring 

in a historic building. In that study, an Autoregressive (AR) 

model fitted to the time history of acceleration measured in 

a sound structure is used. Residual values (forecast and 

measurement difference) are considered as damage 

sensitive features (DSF). In [12] the AR Support Vector 

Machines (SVM) method is used instead of the AR linear 

model and in terms of control ability in nonlinear dynamics 

as well as the structure of the model is proposed a nonlinear 

time series model. [13] Also proposes a technique based on 

the residual moving average regression model of exogenous 

inputs (ARMAX) to improve noise and damage detection 

power in different types of stimuli and realistic conditions 

in shear structure. 

In most of mentioned studies, due to the possibility of 

applying damage with different degrees, the damage 

identification is supervised type. Due to the fact that in most 

cases like turnout survey in this study, the data available is 

only from a sound structure, damage detection must 

perform in an unsupervised form. In this study using control 

chart method on residuals of Non-linear AR neural network 

(NN) prediction models, condition detection in an 

unsupervised method is conducted. 

First, the data source used in this study is described. Then 

the method for modelling of time series is presented. 

Results of condition detection during train passages are 

presented in forth section and validation of the detected 

trains has been done by statistical analysis of the data of 

different sensors. Figure 1 shows diagram of methodology 

in this study. 

 

 

Fig. 1. Diagram of research methodology 

Data source 
Field measurement 
Generally, a turnout is formed from a switch panel a closure 

panel and a crossing panel (figure 2(a)). In a case study, the 

entrance turnout in the mainline of one station was 

instrumented and the turnout was monitored [14, 15]. The 

turnout is a 1:9 left-hand turnout with a 60E1 full rail section 

type.   

Figure 2(a) illustrates the location of train detection sensors, 

including the axle counter (Trigger) sensor and Weigh In 

Motion (WIM) sensor to detect train properties, and switch 

blade lateral displacement (BLD) sensor in the turnout plan 

view. Figure 2(b) shows the hardware part of the turnout 

monitoring system. Data were measured in the mainline and 

the facing direction of the turnout. The measurement 

sampling frequencies of the sensors are 10 kHz. 

Measurements include signals from consecutive passage of 

33 trainsets passenger trains in two-month period. 

 

(a) 

 

(b)  

Fig. 2. Instrumentation of turnout, (a) General layout of 

turnout and sensors configuration, (b) The hardware of the 

turnout monitoring system 

Data Processing 
In the first step, characteristics of passing trains are 

determined by the processing of the axle counter sensor and 

WIM sensors data. Dynamic axle load and train 

configuration from raw data could be detected according to 

Figure 3(a).  

Trainsets have more uniform specifications [16] including 

axial load and speed, number and axle distance and 

therefore, they have more comparative conditions to check 

for fault detection. Therefore, these train passages were 

selected from numerous vehicles data. 

To reduce the volume of data to introduce to the forecasting 

AR model, signal preprocessing, reducing sample 

frequency from 10 kHz to 100 Hz was performed in BLD 

data.  

The measured data from WIM sensors for a train-set 

passage (train No. 20) with 5 self-traction unit (20 axle 

passage) at 116 km/h speed are shown in figure 3(b). In 

order to uniformize all data series, the middle part of the 
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trains, including the passage of four P.Bogies, has been 

included in the continuation of the study (figure 3 b). 

 

(a)  
 

(b)  

Fig. 3. Train specification detection, (a) Train configuration 

detection by WIM sensor outputs, (b) First to 4th P.Bogies 

effects on BLD measurement data 

Based on time of train passage from turnout, classification 

of trains was done and six groups of trains detected (G1 to 

G6). Thirty-three train-sets were selected for applying the 

methodology. 

The statistical specifications of the studied trains containing 

estimated train axle load, speed and BLD are presented in 

the figure 4 (a, b and c) respectively. 

 

(a)   (b)   

(c)   

Fig. 4. The statistical specifications of the studied trains 

containing (a) Train axle load, (b) Speed and (c) BLD 

Time series prediction method 
Predictive models are used to identify systems when 

dynamic models are created from physical systems. 

These dynamic models are important for analyzing, 

simulating, monitoring, and controlling a variety of 

systems [17]. In this study, the application of time series 

forecasting model is aimed at identifying train passings 

with potential of failures. 
 

Nonlinear Auto Regressive Neural network 

(NAR-NN) 

Dynamic Neural Networks (DNN), which include delay 

lines, are used for nonlinear filtering and prediction. 

These networks perform well in predicting time history. 

The view of the desired network is shown in the figure 5. 

 
Fig. 5. Structure of a nonlinear autoregressive neural network 

Future values of time history y (t) are estimated from the 

previous values of the series. This form of nonlinear 

autoregressive prediction, or NAR, can be written as 

follows: 
𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑑)) (1) 

The trial and error method has been used to create the 

optimal structure of the neural network. A hidden layer 

for NN with a sufficient number of neurons provides a 

comprehensive estimator according many similar 

studies. Levenberg– Marquardt that is a powerful 

learning algorithm, was used here. 

The Log-Sigmoid Transfer Function and Linear 

Transfer Function were selected for the hidden and 

output layers. The optimal network structure was 

selected by minimizing the error. The learning pause is 

set until the error reaches an acceptable level or the 

predetermined number of epochs reaches.  

Potential inputs for autoregressive neural network 

models from one to three previous data (Y(t-1), Y(t-2), 

Y(t-3)) checked out. The selection of the optimal 

structure is based on training process on first 50% and 

the test error on the second 50% of the passing train 

BLD data (train No. 50). Similarly, by changing the 

characteristics of the neural network model (number of 

neurons and changing inputs) the results of the model 

performance were extracted, which are presented in 

Figure (6). Performances of models were evaluated by 

mean square error. According to Figure (6), the neural 

network with 5 neurons and 3 previous inputs (three 

delays) is selected as the superior option.  
 

 
Fig. 6. Effect of the number of neurons and delays on the 

performance of the NAR-NN model 
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Results and discussion 
Control chart results 
Based on Shewhart's theory, all processes, although in a 

healthy state, are detected with a certain amount of 

change if measured with a sufficiently accurate 

instrument. When this variability is limited to random 

changes, the process is called static control. Also, if the 

variability of the process is affected by a specific factor 

such as incorrect machine settings, incorrect operation, 

insufficient raw materials, worn machine components, 

etc. in this cases, the process will be out of static control. 

These determinants of change usually have a detrimental 

effect on product quality, so it is important to have 

systematic techniques for identifying these important 

deviations from statistical control as soon as they occur. 

Control charts are primarily used for this purpose. Control 

Chart has the ability to distinguish certain (determinable) 

factors from random changes. Therefore, in order to 

troubleshoot, this method can be used to identify the 

cause of out-of-control conditions [18, 19].  

In this study, control chart has been used for individual 

measurements. Each sample is considered an observation 

and the moving range (MR) of two consecutive samples 

(sample size, n=2) is used to estimate process variability. 

MR, Up Control Limit (UCL) and Low control limit 

(LCL) are estimated from equation 2 using residuals (x) 

values of prediction models. 
𝑀𝑅_𝑖 = |𝑥_𝑖 − 𝑥_(𝑖 − 1) | 
𝑈𝐶𝐿 = 𝐷4𝑀𝑅̅̅̅̅̅ 

𝐿𝐶𝐿 = 𝐷3𝑀𝑅̅̅̅̅̅ 

 

(2) 

MR̅̅̅̅̅  is average of MR and the values of D3 and D4 per 

sample size are available in reference books. More 

detailed information about statistical theory of equations 

could be found in reference [19]. Given that in this case 

each data is correlated with the previous data, the 

presence of a trend in the MR chart does not necessarily 

indicate an error. 

Before calculating the control limits, it must first be 

determined from which train these limits will be 

calculated. The representative train should generate the 

lowest vibration levels to make it easier to identify 

irregularly passing trains. For this purpose, the maximum 

values of blade vibration caused by trains have been re-

evaluated. Train number 464 with the lowest maximum 

BLD was selected as the base train to calculate the 

statistical control limits. Figure (7-a) shows the blade 

vibration caused by the passage of this train. The 

prediction results of the LSTM model and the residual 

values for train No. 464 are shown in Figure (7-b). 

 

(a)

 

(b)

 
Fig. 7. (a) Forecast and (b) Residual Values - Train No. 464 

 Here is an example of results for the range of residual 

values of trains group 6 in figure 8. As shown in Figure 

8, trains 680 and 646 clearly have values beyond 

statistical control limit in second and first P.Bogie 

respectively. 

 
Fig. 8. Results of R-chart analysis of trains group 6 

 
To identify critical trains, box plot analysis was 

performed on the OOC points, which the results are 

shown separately by the location of the bogie pairs in 

Figure 9. The allowable number of OOCs is considered 

equal to the outlier limit in the total case of OOCs. 

According to the results trains number 646, 680 and 268 

are the worst cases in first, second and fourth P.Bogie 

respectively. The highest number of OOCs was identified 

on the train number 680. The cases of trains detected in 

the previous are summarized in Table (1). 

 
Fig. 9. Box plot analysis of OOC cases for identification of 

worst train passages 
Table 1. Trains detected by the proposed method   

Total 4th P. Bogies 2nd P. Bogies 1st P. Bogies 

680 268 680 646 
646 - 426 - 
268 - - - 

 

The detected trains as potentially defective train passages 

are validated by examining the values of the BLD sensor 

and other instrumented sensors in the turnout. 
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Validation of train condition detection results 

Validation of the results has been evaluated by reviewing 

and comparing the outputs of three sensors including 

BLD and switch rod force (SRF). 

   a) BLD sensor 

For comparison, the displacement of the blade of train 

No. 50 as a normal passage is compared with the data 

obtained from the passage of train No. 680. As can be 

seen, the sensor recorded small values of about 0.1 to 0.2 

mm, in the middle areas between the passages of the 

P.Bogies (Figure 10a). However, the displacement of the 

blade due to the passage of the train No. 680 shows the 

values of intense vibration after the passage of the first 

and fourth P.Bogies which can reach up to 1 mm (Figure 

10b). 

 

 (a)  

(b)  
Fig. 10. Comparison of BLD measurement a) Blade vibration 

due to the passage of train No. 50 as a normal passage b) Blade 

vibration caused by passing train No. 680 
 

To compare all the trains, after synchronizing the blade 

displacement signals, values were plotted for all 8 

vibration zones caused by the train passing in figure 11 

and maximum values were identified. These 8 areas 

include the passage of 4 P.Bogies (1, 3, 5, 7 areas in fig. 

11) and 4 middle zones (M-zones containing 2, 4, 6, 8 in 

fig. 11) for a train-set with 5 self-traction wagons. 
 

 
Fig. 11. Blade vibration due to the passage of all trains 

The eight areas mentioned are evaluated, and trains that 

match the trains detected by the statistical control method 

are shown in Figure 12(a, b and c) for the first, second, 

and fourth M-zones respectively. Finally, trains No. 680, 

646, 426 and 628 were detected by this method. 

 

 
Fig. 12. Blade vibration during the passage of all trains (a) 

First M-zone b) Second M-zone c) Fourth M-zone 
    b) Switch rod force sensor 

Another signal that was examined to validate the 

detection results of irregularly passing trains is the switch 

rod force. To show the effect of passing each wheel on 

the position of the switch rod, trigger signals and the 

switch rod force signals were aligned. In Figure (13) the 

effect of the impact of each wheel on the force of the 

switch rod and fluctuations after passing the pair of 

bogies is well known. Figure (14) shows the effect of 

passing the bogies of all trains on the switch rod force. 

 
Fig. 13. Aligned signals of trigger and force of the switch rod 

 

(a) 

(b) 

(c) 
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Fig. 14. Effect of passing the bogies of all trains on the force 

of the switch rod 

Here, for more efficient comparison between trains, three 

statistical parameters including standard deviation, mean 

and minimum to maximum have been used. Figure 15 (a, 

b and c) shows the statistical parameters for the passage 

of the first, second and fourth P.Bogies of the trains 

respectively. 

(a)  

(b)  

(c)  
Fig. 15. SRF Statistical parameters for the passage of a) First 

P.Bogie b) Second P.Bogie c) Fourth P.Bogie 
 

In summary, five trains detected by statistical sensors 

output investigation of the SRF. Table 2, shows results 

that confirms the control chart method by the statistical 

analysis of the sensors. The location of 

irregularities/defects is also included in the investigation. 

Therefore, trains including 680, 646, 426 and 268 were 

detected by statistical evaluation of sensor values, which 

confirms control charts method using LSTM and NN 

methods. 

Table 2. Trains detected by two methods of control chart and 

sensors output investigation 

Location on the train 
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 4th 

P.Bogies 

2nd 

P.Bogies 

1st 

P.Bogies 

268 426-680 646-680 BLD 
NAR-
NN 

NA 

680-268 426-680 646-680 BLD NA Max 

268 680 680 SRF NA 
Min to 

Max 

Due to the results in all cases, the trains identified by the 

statistical control method are compatible with statistically 

examining the output of the sensors. 

 
Conclusion 

 

In this study switch blade lateral displacement data were 

used to monitor the vibration and wheel shocks caused by 

irregular  and potentially defective train passing. Using 

neural network method, the time history of blade 

displacements has been modeled. BLD time series data is 

modeled using a neural network model for the extraction 

of DSF. Statistical method (Control Charts) has been used 

to identify the number and location of OOC cases. 

According to the results of this study, trains with 

destructive passage through the switch panel were 

identified. For the purpose of validation, the results were 

compared with two parallel methods including statistical 

analysis of blade displacements and the switch rod force. 

In all cases, reviewing the results of the sensors confirmed 

the results obtained using the NN method. However, 

statistical maximum values alone are not able to identify 

the desired trains. The main difference in blade vibration 

caused by the detected trains was the free vibration in the 

middle zone of the pair bogies crossing, which does not 

necessarily occur in trains with maximum blade 

vibration. 

Along with periodic visual inspections, real-time 

infrastructure condition detection can help to introduce 

the performance of the structure so that maintenance is 

more reliable. The importance of this study is in 

presenting a new solution for identifying irregularly 

passing trains in the unsupervised method in railway 

switches. The application of this method, which is based 

on switch structure monitoring data, can improve and 

optimize the operation of different rolling stocks and thus 

reduce vehicles and line maintenance costs. The results 

can also be used in preventive maintenance to prevent the 

spread of breakdowns and injuries.  
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